Proposal of Four New Aureobasidium Species for Exopolysaccharide Production

Author:

Wu Feng1,Feng Zixuan1,Wang Manman1,Wang Qiming123ORCID

Affiliation:

1. School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China

2. Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China

3. Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China

Abstract

In this study, 99 strains of Aureobasidium species were isolated from various samples collected from different locations in China, among which 14 isolates showed different morphological characteristics to other strains identified as known Aureobasidium species. Based on morphological characteristics, those 14 strains were classified into four groups, represented by stains of KCL139, MDSC−10, XZY411−4, and MQL9−100, respectively. Molecular analysis of the internal transcriptional spacer (ITS) and part of the large ribosome subunit (D1/D2 domains) indicated that those four groups represent four new species in the Aureobasidium. Therefore, the names Aureobasidium insectorum sp. nov., A. planticola sp. nov., A. motuoense sp. nov., and A. intercalariosporum sp. nov. are proposed for KCL139, MDSC−10, XZY411−4, and MQL9−100, respectively. We also found that there were differences in the yield of exopolysaccharides (EPS) among and within species, indicating strain-related exopolysaccharide-producing diversity.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of China

Advanced Talents Incubation Program of the Hebei University

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference47 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Aureobasidium research: Paving the path to industrial utilization;Microbial Biotechnology;2024-07-29

2. Use of Aureobasidium in a sustainable economy;Applied Microbiology and Biotechnology;2024-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3