Emersion-Associated Responses of an Intertidal Coral and Its Suitability for Transplantation to Ecologically Engineer Seawalls

Author:

Yong Clara,Poquita-Du RosaORCID,Huang DanweiORCID,Todd Peter

Abstract

There is a growing interest in transplanting corals onto the intertidal section of artificial coastal defences (e.g., seawalls) as an ecological engineering strategy to enhance biodiversity on urban shores. However, this inevitably results in exposure to the harsh environmental conditions associated with emersion (aerial exposure). Although the effects of a multitude of environmental stressors on corals have been examined, their photophysiological and gene expression responses to emersion stress remain understudied, as does the among-genotype variation in these responses. In this study, we conducted an in situ experiment to test the effects of increased daily emersion duration on a locally common intertidal coral, Dipsastraea cf. lizardensis. Coral fragments (n = 3) from five genotypically distinct colonies were subjected to two treatments: (1) increased daily emersion duration (~4.5 h d−1) and, (2) control (~3 h d−1) for three consecutive days during spring low tide. We examined the post-experimental photophysiological responses and expression level of a stress-associated gene, Hsp16. Relative to the controls, coral fragments that were exposed to longer daily emersion duration displayed significantly reduced effective quantum yield, while endosymbiont density varied significantly among genotypes across the experimental conditions. We found no significant differences in chlorophyll a concentration and Hsp16 gene expression level, suggesting that changes in these processes may be gradual and the duration of treatment that the corals were subjected to is likely within their tolerance limits. Taken together, it appears that D. cf. lizardensis displays substantial capacity to cope with sup-optimal conditions associated with emersion which makes it a promising candidate for transplantation onto intertidal seawalls. However, within-species variation in their stress response indicates that not all genotypes respond similarly to emersion, and this should be taken into account when selecting donor colonies for transplantation.

Funder

National Research Foundation Singapore

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3