Abstract
Landfast ice is an integral component of the coastal ecosystem. Extracting the edge and mapping the extent of landfast ice are one of the main methods for studying ice changes. In this work, a standardized process for extracting landfast ice edge in the Baltic Sea using the InSAR coherence image is established with Sentinel-1 radar data and InSAR technology. A modified approach combining multiscale segmentation and morphological erosion is then proposed to provide a reliable way to extract landfast ice edge. Firstly, the coherence image is obtained using InSAR technology. Then, the edge is separated and extracted with the modified approach. The modified approach is essentially a four-step procedure involving image segmentation, median filter, morphological erosion, and rejection of small patches. Finally, the full extent of landfast ice can be obtained using floodfill algorithm. Multiple InSAR image pairs of Sentinel-1A acquired from 2018 to 2019 are utilized to successfully extract the landfast ice edge in the Gulf of Bothnia. The results show that the landfast ice edge and the extents obtained by the proposed approach are visually consistent with those shown in the ice chart issued by the Swedish Meteorological and Hydrological Institute (SMHI) over a coastline length of 345 km. The mean distance between land–water boundary and the coastline issued by the National Oceanic and Atmospheric Administration (NOAA) is 109.1 m. The modified approach obviously preserves more details in local edge than the reference method. The experimental results show that the modified approach proposed in this paper can extract the edge and map the extent of landfast ice more accurately and quickly, and is therefore expected to contribute to the further understanding and analyzing the changes of landfast ice in the future.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献