Abstract
Coal dust explosion constitutes a significant hazard in underground coal mines, coal power plants and other industries utilising coal as fuel. Knowledge of the explosion mechanism and the factors causing coal explosions is essential to investigate for the identification of the controlling factors for preventing coal dust explosions and improving safety conditions. However, the underlying mechanism involved in coal dust explosions is rarely studied under Artificial Intelligence (AI) based modelling. Coal from three different regions of Khyber Pakhtunkhwa, Pakistan, was tested for explosibility in 1.2 L Hartmann apparatus under various particle sizes and dust concentrations. First, a random forest algorithm was used to model the relationship between inputs (coal dust particle size, coal concentration and gross calorific value (GCV)), outputs (maximum pressure (Pmax) and the deflagration index (Kst)). The model reported an R2 value of 0.75 and 0.89 for Pmax and Kst. To further understand the impact of each feature causing explosibility, the random forest AI model was further analysed for sensitivity analysis by SHAP (Shapley Additive exPlanations). The study revealed that the most critical parameter affecting the explosibility of coal dust were particle size > GCV > concentration for Pmax and GCV > Particle size > Concentration for Kst. Mutual interaction SHAP plots of two variables at a time revealed that with <200 gm/L concentration, −73 µm size and a high GCV coal was the most explosive at a high concentration (>400 gm/L), explosibility is relatively lower irrespective of GCV and particle sizes.
Funder
Higher Education Commission
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献