Suitability Evaluation of Different Measured Variables to Assess the Occupancy Patterns of a Building: Analysis of a Classroom of a School in Madrid during the COVID-19 Pandemic

Author:

Sánchez María NuriaORCID,Giancola EmanuelaORCID,Soutullo Silvia,Gamarra Ana RosaORCID,Olmedo Rafael,Ferrer José Antonio,Jiménez María JoséORCID

Abstract

Building occupancy is one of the relevant variables to understand the energy performance of buildings and to reduce the current gap between simulation-based and actual energy performance. In this study, the occupancy of a classroom in an educational center monitored over a full year was experimentally assessed. The classroom had different occupancy levels during the school year, with a theoretical minimum of eleven students, and no occupancy during vacations and weekends. Different variables such as indoor air temperature, relative humidity, CO2 concentration, overall electrical energy consumption of the educational center, electrical energy consumption of the building in which the monitored classroom is located, and heating energy consumption were recorded. We analyzed which of these variables were possible indicators of classroom occupancy, using the school timetable as a theoretical reference value for the validation of the results. Based on previous studies, one-hour moving averages are used to better identify the occupancy patterns by smoothing the fluctuations that are not a consequence of a change in the classroom occupancy. Histograms of each variable are used to identify the variable ranges associated within the occupancy: occupied or empty. The concentration of CO2 and electric measurements, identified in previous works as suitable to assess the occupancy patterns of rooms like offices with lower levels of occupancy, are recognized as potential occupancy indicators. It is therefore concluded that a higher level of space occupancy does not affect the result, and the same variables are identified as potential occupancy indicators.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. Climate Change 2007: Synthesis Report; Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007

2. An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas

3. Characterizing Positive Energy District (PED) through a Preliminary Review of 60 Existing Projects in Europe

4. Sustainable Development Goals (SDGs)https://sdgs.un.org/goals

5. Higher Education Challenges: Developing Skills to Address Contemporary Economic and Sustainability Issues

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3