Fault Diagnosis of Tennessee Eastman Process with XGB-AVSSA-KELM Algorithm

Author:

Hu Mingfei,Hu Xinyi,Deng ZhenzhouORCID,Tu Bing

Abstract

In fault detection and the diagnosis of large industrial systems, whose chemical processes usually exhibit complex, high-dimensional, time-varying and non-Gaussian characteristics, the classification accuracy of traditional methods is low. In this paper, a kernel limit learning machine (KELM) based on an adaptive variation sparrow search algorithm (AVSSA) is proposed. Firstly, the dataset is optimized by removing redundant features using the eXtreme Gradient Boosting (XGBOOST) model. Secondly, a new optimization algorithm, AVSSA, is proposed to automatically adjust the network hyperparameters of KELM to improve the performance of the fault classifier. Finally, the optimized feature sequences are fed into the proposed classifier to obtain the final diagnosis results. The Tennessee Eastman (TE) chemical process is used to verify the effectiveness of the proposed method through multidimensional diagnostic metrics. The results show that our proposed diagnosis method can significantly improve the accuracy of TE process fault diagnosis compared with traditional optimization algorithms. The average diagnosis rate for 21 faults was 91.00%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3