Abstract
In fault detection and the diagnosis of large industrial systems, whose chemical processes usually exhibit complex, high-dimensional, time-varying and non-Gaussian characteristics, the classification accuracy of traditional methods is low. In this paper, a kernel limit learning machine (KELM) based on an adaptive variation sparrow search algorithm (AVSSA) is proposed. Firstly, the dataset is optimized by removing redundant features using the eXtreme Gradient Boosting (XGBOOST) model. Secondly, a new optimization algorithm, AVSSA, is proposed to automatically adjust the network hyperparameters of KELM to improve the performance of the fault classifier. Finally, the optimized feature sequences are fed into the proposed classifier to obtain the final diagnosis results. The Tennessee Eastman (TE) chemical process is used to verify the effectiveness of the proposed method through multidimensional diagnostic metrics. The results show that our proposed diagnosis method can significantly improve the accuracy of TE process fault diagnosis compared with traditional optimization algorithms. The average diagnosis rate for 21 faults was 91.00%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献