Pumped Storage Hydropower for Sustainable and Low-Carbon Electricity Grids in Pacific Rim Economies

Author:

Gilfillan DanielORCID,Pittock JamieORCID

Abstract

Because generating electricity significantly contributes to global greenhouse gas emissions, meeting the 2015 Paris Agreement and 2021 Glasgow Climate Pact requires rapidly transitioning to zero or low-emissions electricity grids. Though the installation of renewables-based generators—predominantly wind and solar-based systems—is accelerating worldwide, electrical energy storage systems, such as pumped storage hydropower, are needed to balance their weather-dependent output. The authors of this paper are the first to examine the status and potential for pumped storage hydropower development in 24 Pacific Rim economies (the 21 member economies of the Asia Pacific Economic Cooperation plus Cambodia, Lao PDR, and Myanmar). We show that there is 195 times the pumped storage hydropower potential in the 24 target economies as would be required to support 100% renewables-based electricity grids. Further to the electrical energy storage potential, we show that pumped storage hydropower is a low-cost, low-greenhouse-gas-emitting electrical energy storage technology that can be sited and designed to have minimal negative (or in some cases positive) social impacts (e.g., requirements for re-settlement as well as impacts on farming and livelihood practices) and environmental impacts (e.g., impacts on water quality and biodiversity). Because of the high potential for pumped storage hydropower-based electrical energy storage, only sites with low negative (or positive) social and environmental impacts such as brownfield sites and closed-loop PSH developments (where water is moved back and forth between two reservoirs, thus minimally disturbing natural hydrology) need be developed to support the transition to zero or low-carbon electricity grids. In this way, the advantages of well-designed and -sited pumped storage hydropower can effectively address ongoing conflict around the social and environmental impacts of conventional hydropower developments. Noting the International Hydropower Association advocacy for pumped storage hydropower, we make recommendations for how pumped storage hydropower can sustainably reduce electricity-sector greenhouse gas emissions, including through market reforms to encourage investment and the application of standards to avoid and mitigate environmental and social impacts.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference84 articles.

1. Renewable Power Generation Costs in 2020,2021

2. Climate Action Pathway: Energy (Vision and Summary),2021

3. APEC Targets Doubling of Renewable Energy. Asia Pacific Economic Communityhttps://www.apec.org/Press/News-Releases/2014/1121_renewables

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3