Abstract
The large fluctuation of net torque and the existence of negative torque on the crank output shaft of the beam pumping unit are the decisive factors leading to its low efficiency and high energy consumption. The conventional pumping unit CYJ10-4.2-53HF was selected as the study object on the basis of the fixed shaft secondary balance principle and the positive torque modulation scheme was first proposed according to the following secondary balance principle based on the linkage. The kinematics analysis of the suspension point and the secondary incremental velocity mechanism were carried out using the theory of rigid body plane kinematics. The force analysis of each moving part of the pumping unit was carried out, the net torque expression of the crank output shaft was obtained, and an example calculation was performed. The positive torque beam pumping unit was developed and tested in a field test. The tests showed that the positive torque beam pumping unit was able to fully realize positive torque operation under field well conditions, with a power saving rate of 23.73% and a 14.5% increase in system efficiency, and that the reliability of the pumping unit meets the requirements for field application.
Funder
Northeast Petroleum University Guided Innovation Fund
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献