A Semantically Data-Driven Classification Framework for Energy Consumption in Buildings

Author:

Popa Angela,Ramallo González Alfonso P.,Jaglan Gaurav,Fensel AnnaORCID

Abstract

Encouraged by the European Union, all European countries need to enforce solutions to reduce non-renewable energy consumption in buildings. The reduction of energy (heating, domestic hot water, and appliances consumption) aims for the vision of near-zero energy consumption as a requirement goal for constructing buildings. In this paper, we review the available standards, tools and frameworks on the energy performance of buildings. Additionally, this work investigates if energy performance ratings can be obtained with energy consumption data from IoT devices and if the floor size and energy consumption values are enough to determine a dwellings’ energy performance rating. The essential outcome of this work is a data-driven prediction tool for energy performance labels that can run automatically. The tool is based on the cutting edge kNN classification algorithm and trained on open datasets with actual building data such as those coming from the IoT paradigm. Additionally, it assesses the results of the prediction by analysing its accuracy values. Furthermore, an approach to semantic annotations for energy performance certification data with currently available ontologies is presented. Use cases for an extension of this work are also discussed in the end.

Funder

Spanish Ministry of Economy and Competitiveness through PERSEIDES

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Energy Efficiency Plan 2011 https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0109:FIN:EN:PDF

2. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG

3. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1399375464230&uri=CELEX:32012L0027

4. 5 Ways the Internet of Things Could Help Combat Climate Change https://www.lanner-america.com/blog/5-ways-internet-things-help-combat-climate-change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Methods to Increase the Energy Efficiency of Buildings;Vìsnik Nacìonalʹnogo unìversitetu "Lʹvìvsʹka polìtehnìka". Serìâ Ìnformacìjnì sistemi ta merežì;2023-12-26

2. A semantic data framework to support data-driven demand forecasting;Journal of Physics: Conference Series;2023-11-01

3. Semantic Models for Buildings Energy Management;2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT);2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3