A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning

Author:

Tektaş Berna,Turan Hasan Hüseyin,Kasap NihatORCID,Çebi FerhanORCID,Delen DursunORCID

Abstract

This study examines the long-term energy capacity investment problem of a power generation company (GenCo), considering the drought threat posed by climate change in hydropower resources in Turkey. The mid-term planning decisions such as maintenance and refurbishment scheduling of power plants are also considered in the studied investment planning problem. In the modeled electricity market, it is assumed that GenCos conduct business in uncertain market conditions with both bilateral contracts (BIC) and day-ahead market (DAM) transactions. The problem is modeled as a fuzzy mixed-integer linear programming model with a fuzzy objective and fuzzy constraints to handle the imprecisions regarding both the electricity market (e.g., prices) and environmental factors (e.g., hydroelectric output due to drought). Bellman and Zadeh’s max-min criteria are used to transform the fuzzy capacity investment model into a model with a crisp objective and constraints. The applicability of methodology is illustrated by a case study on the Turkish electric market in which GenCo tries to find the optimal power generation investment portfolio that contains five various generation technologies alternatives, namely, hydropower, wind, conventional and advanced combined-cycle natural gas, and steam (lignite) turbines. The results show that wind turbines with low marginal costs and steam turbines with high energy conversion efficiency are preferable, compared with hydroelectric power plant investments when the fuzziness in hydroelectric output exists (i.e., the expectation of increasing drought conditions as a result of climate change). Furthermore, the results indicate that the gas turbine investments were found to be the least preferable due to high gas prices in all scenarios.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3