Abstract
In this paper, a new hybrid TSA-PSO algorithm is proposed that combines tunicate swarm algorithm (TSA) with the particle swarm optimization (PSO) technique for efficient maximum power extraction from a photovoltaic (PV) system subjected to partial shading conditions (PSCs). The performance of the proposed algorithm was enhanced by incorporating the PSO algorithm, which improves the exploitation capability of TSA. The response of the proposed TSA-PSO-based MPPT was investigated by performing a detailed comparative study with other recently published MPPT algorithms, such as tunicate swarm algorithm (TSA), particle swarm optimization (PSO), grey wolf optimization (GWO), flower pollination algorithm (FPA), and perturb and observe (P&O). A quantitative and qualitative analysis was carried out based on three distinct partial shading conditions. It was observed that the proposed TSA-PSO technique had remarkable success in locating the maximum power point and had quick convergence at the global maximum power point. The presented TSA-PSO MPPT algorithm achieved a PV tracking efficiency of 97.64%. Furthermore, two nonparametric tests, Friedman ranking and Wilcoxon rank-sum, were also employed to validate the effectiveness of the proposed TSA-PSO MPPT method.
Funder
European Commission H2020 TWINNING JUMP2Excel (Joint Universal activities for Mediterranean PV integration Excellence) project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献