Assessment of Environmental Loads in the Life Cycle of a Retail and Service Building

Author:

Tomporowski DanielORCID,Kasner Robert,Franus WojciechORCID,Doerffer KrzysztofORCID

Abstract

In order to achieve the European Union’s climate and energy goals, investments are required, mainly in the areas of energy efficiency, renewable energy sources and infrastructure. Buildings are responsible for almost half of total energy consumption, and nearly 80% of them are energy and ecologically inefficient. The policy of European countries is increasingly more focused on facilities with the highest potential in the areas of energy and matter saving and the possibly circular economy. The aim of the work was to assess the environmental loads occurring in the life cycle of an existing retail and service building. The analysis was performed using the Life Cycle Assessment (LCA) method. By using the IMPACT 2002+ model, it has become possible to assess the impact of the life cycle of the studied facility on human health, environmental quality, climate change and raw material resources. The highest level of negative consequences in the above-mentioned areas was recorded for the life cycle with the disposal in the form of landfill storage. The operational stage was the stage in the life cycle that caused the most harmful impacts on the environment. Therefore, it is necessary to optimize the ecological and energy consumption of resources, for example, by selecting the size and cubature of the facility for its function, maintaining good technical condition, introducing improvements in the usage processes or implementing solutions aimed at reducing media consumption. As a result of the conducted analyses, it can be noticed that in the future, the reduction in energy consumption in the operation of buildings will be of fundamental importance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3