Abstract
Thermodynamic, exergetic and thermoeconomic analyses were performed on two types of double-effect LiBr–water absorption refrigeration systems (ARS) for use with a 5-kW high-temperature proton exchange membrane fuel cell (HT-PEMFC) as a heat source. Proper temperatures of the high-pressure generator, combined generator and condenser, condenser, absorber and evaporator were determined to meet the requirements of constant cooling demands for data center operations. The heat balance of the combined unit of generator and condenser in the industrial double-effect LiBr-water ARS is important for determining the flow rate of the primary vapor refrigerant from the high-pressure generator. The industrial double-effect ARS system, whose analysis has not been studied analytically, outperformed the series double-effect system and provided 6.5 kW of cooling capacity with a coefficient of performance of 0.99. The unit cost of chilled water estimated by the modified productive structure analysis (MOPSA) method is approximately 7.18 USD/GJ (=0.026 US$/kWh). Effective exergetic efficiency of HT-PEMFC with the industrial ARS increases to 57.6% from 47.0%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献