An Investigation of Rotary Drone HERM Line Spectrum under Manoeuvering Conditions

Author:

Klaer PeterORCID,Huang Andi,Sévigny Pascale,Rajan SreeramanORCID,Pant ShashankORCID,Patnaik Prakash,Balaji Bhashyam

Abstract

Detecting and identifying drones is of great interest due to the proliferation of highly manoeuverable drones with on-board sensors of increasing sensing capabilities. In this paper, we investigate the use of radars for tackling this problem. In particular, we focus on the problem of detecting rotary drones and distinguishing between single-propeller and multi-propeller drones using a micro-Doppler analysis. Two different radars were used, an ultra wideband (UWB) continuous wave (CW) C-band radar and an automotive frequency modulated continuous wave (FMCW) W-band radar, to collect micro-Doppler signatures of the drones. By taking a closer look at HElicopter Rotor Modulation (HERM) lines, the spool and chopping lines are identified for the first time in the context of drones to determine the number of propeller blades. Furthermore, a new multi-frequency analysis method using HERM lines is developed, which allows the detection of propeller rotation rates (spool and chopping frequencies) of single and multi-propeller drones. Therefore, the presented method is a promising technique to aid in the classification of drones.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Frequency Resolution Analysis for Continuous Human Activity Recognition using Radar Networks;2024 IEEE International Workshop on Antenna Technology (iWAT);2024-04-15

2. Malicious UAV detection using various modalities;Drone Systems and Applications;2024-01-01

3. G-Band FMCW Doppler Radar for Close-Range Environmental Sensing;IEEE Transactions on Radar Systems;2024

4. Parameter Estimation of Rotary Drones in Far Distance using Long-Time Spectral Processing;2023 IEEE International Radar Conference (RADAR);2023-11-06

5. K Band Radar Drone Signatures;Communications in Computer and Information Science;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3