A Multi-Agent Reinforcement Learning-Based Grant-Free Random Access Protocol for mMTC Massive MIMO Networks

Author:

Bueno Felipe Augusto Dutra1ORCID,Goedtel Alessandro2ORCID,Abrão Taufik3,Marinello José Carlos2ORCID

Affiliation:

1. Electrical and Computer Engineering, Faculty of Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada

2. Department of Electrical Engineering, Federal University of Technology-Parana, Av. Alberto Carazzai, 1640, Cornelio Procopio 86300 000, Brazil

3. Department of Electrical Engineering, State University of Londrina, Rod. Celso Garcia Cid-PR445, Londrina 86057 970, Brazil

Abstract

The expected huge number of connected devices in Internet of Things (IoT) applications characterizes the massive machine-type communication (mMTC) scenario, one prominent use case of beyond fifth-generation (B5G) systems. To meet mMTC connectivity requirements, grant-free (GF) random access (RA) protocols are seen as a promising solution due to the small amount of data that MTC devices usually transmit. In this paper, we propose a GF RA protocol based on a multi-agent reinforcement learning approach, applied to aid IoT devices in selecting the least congested RA pilots. The rewards obtained by the devices in collision cases resemble the congestion level of the chosen pilot. To enable the operation of the proposed method in a realistic B5G network scenario and aiming to reduce signaling overheads and centralized processing, the rewards in our proposed method are computed by the devices taking advantage of a large number of base station antennas. Numerical results demonstrate the superior performance of the proposed method in terms of latency, network throughput, and per-device throughput compared with other protocols.

Funder

National Council for Scientific and Technological Development (CNPq) of Brazil

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3