Scalability of Cyber-Physical Systems with Real and Virtual Robots in ROS 2

Author:

Mañas-Álvarez Francisco José1ORCID,Guinaldo María1ORCID,Dormido Raquel1ORCID,Dormido-Canto Sebastian1ORCID

Affiliation:

1. Department of Computer Sciences and Automatic Control, Universidad Nacional de Educación a Distancia (UNED), Juan del Rosal 16, 28040 Madrid, Spain

Abstract

Nowadays, cyber-physical systems (CPSs) are composed of more and more agents and the demand for designers to develop ever larger multi-agent systems is a fact. When the number of agents increases, several challenges related to control or communication problems arise due to the lack of scalability of existing solutions. It is important to develop tools that allow control strategies evaluation of large-scale systems. In this paper, it is considered that a CPS is a heterogeneous robot multi-agent system that cooperatively performs a formation task through a wireless network. The goal of this research is to evaluate the system’s performance when the number of agents increases. To this end, two different frameworks developed with the open-source tools Gazebo and Webots are used. These frameworks enable combining both real and virtual agents in a realistic scenario allowing scalability experiences. They also reduce the costs required when a significant number of robots operate in a real environment, as experiences can be conducted with a few real robots and a higher number of virtual robots by mimicking the real ones. Currently, the frameworks include several types of robots, such as the aerial robot Crazyflie 2.1 and differential mobile robots Khepera IV used in this work. To illustrate the usage and performance of the frameworks, an event-based control strategy for rigid formations varying the number of agents is analyzed. The agents should achieve a formation defined by a set of desired Euclidean distances to their neighbors. To compare the scalability of the system in the two different tools, the following metrics have been used: formation error, CPU usage percentage, and the ratio between the real time and the simulation time. The results show the feasibility of using Robot Operating System (ROS) 2 in distributed architectures for multi-agent systems in experiences with real and virtual robots regardless of the number of agents and their nature. However, the two tools under study present different behaviors when the number of virtual agents grows in some of the parameters, and such discrepancies are analyzed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed Reality Environment and High-Dimensional Continuification Control for Swarm Robotics;IEEE Transactions on Control Systems Technology;2024

2. Muestreo y comunicación: impacto en el control de formaciones en sistemas multi-robot heterogéneos;Revista Iberoamericana de Automática e Informática industrial;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3