Inhibition Kinetics and Theoretical Studies on Zanthoxylum chalybeum Engl. Dual Inhibitors of α-Glucosidase and α-Amylase

Author:

Kimani Njogu M.1ORCID,Ochieng Charles O.2,Ogutu Mike Don2ORCID,Yamo Kevin Otieno2,Onyango Joab Otieno3ORCID,Santos Cleydson B. R.45ORCID

Affiliation:

1. Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya

2. Department of Chemistry, Maseno University, Maseno P.O. Box 333-40105, Kenya

3. School of Chemical Sciences and Technology, Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya

4. Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, AP, Brazil

5. Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil

Abstract

Compounds from Zanthoxylum chalybeum Engl. were previously reported for inhibitory activities of amylase and glucosidase enzymatic action on starch as a preliminary study toward the establishment of a management strategy against postprandial hyperglycemia, however, the inhibitory kinetics and molecular interaction of these compounds were never established. A study was thus designed to establish the inhibitory kinetics and in silico molecular interaction of α-glucosidase and α-amylase with Z. chalybeum metabolites based on Lineweaver–Burk/Dixon plot analyses and using Molecular Operating Environment (MOE) software, respectively. Skimmianine (5), Norchelerythrine (6), 6-Acetonyldihydrochelerythrine (7), and 6-Hydroxy-N-methyldecarine (8) alkaloids showed mixed inhibition against both α-glucosidase and α-amylase with comparable Ki to the reference acarbose (p > 0.05) on amylase but significantly higher activity than acarbose on α-glucosidase. One phenolic 2,3-Epoxy-6,7-methylenedioxyconiferol (10) showed a competitive mode of inhibition both on amylase and glucosidase which were comparable (p > 0.05) to the activity of acarbose. The other compounds analyzed and displayed varied modes of inhibition between noncompetitive and uncompetitive with moderate inhibition constants included chaylbemide A (1), chalybeate B (2) and chalybemide C (3), fagaramide (4), ailanthoidol (9), and sesame (11). The important residues of the proteins α-glucosidase and α-amylase were found to have exceptional binding affinities and significant interactions through molecular docking studies. The binding affinities were observed in the range of −9.4 to −13.8 and −8.0 to −12.6 relative to the acarbose affinities at −17.6 and −20.5 kcal/mol on α-amylase and α-glucosidase residue, respectively. H-bonding, π-H, and ionic interactions were noted on variable amino acid residues on both enzymes. The study thus provides the basic information validating the application of extracts of Z. chalybeum in the management of postprandial hyperglycemia. Additionally, the molecular binding mechanism discovered in this study could be useful for optimizing and designing new molecular analogs as pharmacological agents against diabetes.

Funder

World Academy of Science

Publisher

MDPI AG

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3