Evaluation of Low Cycle Fatigue Performance of Selective Laser Melted Titanium Alloy Ti–6Al–4V

Author:

Zhang PengORCID,He Allen Naihui,Liu FeiORCID,Zhang KaifeiORCID,Jiang Junjie,Zhang David Zhengwen

Abstract

The material of Ti–6Al–4V has been widely applied in various industries, such as automobile, aerospace, and medical due to its high specific strength, superior thermal stability and strong corrosion resistance. In the recent decades, selective laser melting (SLM) has become an attractive method to fabricate Ti–6Al–4V parts, thanks to its significant advantages in low material consumption, the high degree of freedom in design, low carbon footprint, etc. Predictability of SLM material fatigue properties is especially important for the safety-critical structures under dynamic load cases. The present research is aimed at evaluating the low cycle fatigue (LCF) performance of SLM Ti–6Al–4V under high loading states. LCF tests were performed for as-built and annealed SLM Ti–6Al–4V. Comparison between LCF properties of SLM Ti–6Al–4V and the wrought Ti–6Al–4V was also made. It was found that as-built SLM Ti–6Al–4V demonstrated a comparable LCF performance with the wrought material. The LCF life of as-built SLM Ti–6Al–4V was longer than that of wrought Ti–6Al–4V at lower strain amplitudes. However, the wrought Ti–6Al–4V had better LCF performance at higher strain amplitudes. The results revealed that the porosity in the as-built SLM material exerted much more impact on the degradation of the material at high strain amplitudes. Annealing deteriorated the LCF performance of SLM Ti–6Al–4V material due to the formation of coarser grains. The cyclic Ramberg–Osgood and the Basquin–Coffin–Manson models were fitted to depict the cyclic stress–strain and the strain–life curves for the SLM Ti–6Al–4V, based on which the LCF performance parameters were determined. In addition, the fatigue fracture surfaces were observed by using scanning electron microscopy (SEM), and the results indicated that fatigue cracks originated from the surface or subsurface defects.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3