Abstract
Naturally exposed rusted rebar has been widely used for the production of reinforced concrete. However, rusted rebar is prone to corrosion under chloride ion (Cl−) contamination and/or at a low alkalinity of concrete. This study employed two surface modification methods, sand blasting and wire brushing, to augment the corrosion resistance of naturally exposed rusted rebar. Electrochemical tests revealed that the surface-modified rebar displayed a significant improvement of passivation in the concrete alkaline environment and anticorrosion performance in both the Cl− free and Cl−-containing simulated concrete pore solutions of different alkalinity. The enhanced performance was mainly due to the elimination of the rust layer and the direct exposure of the fresh metallic surface to the alkaline medium. Moreover, the effect of surface nanograins on the intensified passive film led to the best passivation performance of the wire-brushed rebar. The overall findings demonstrate that the two developed methods were conducive to the passivation and anticorrosion performance of the rusted rebar and thereby hold great promise for improving the service life of the reinforced concrete structures.
Funder
Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
National Basic Research Program of China
Six Talent Peaks Project in Jiangsu Province
Subject
General Materials Science,Metals and Alloys
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献