Effect of Microstructure on the High-Cycle Fatigue Behavior of Ti(43-44)Al4Nb1Mo (TNM) Alloys

Author:

Tang BinORCID,Zhu Bin,Bi Weiqing,Liu Yan,Li Jinshan

Abstract

To investigate the high-cycle fatigue (HCF) behavior of TNM alloys, three different microstructures were designed and obtained by different heat treatments. Staircase tests and fatigue tests in a finite life-region were performed to evaluate the fatigue properties. Then, the fracture surfaces were analyzed to study the fracture behavior of TNM alloys with different microstructures. Results showed that the TNM alloys with duplex microstructure possesses the highest fatigue strength and fatigue life, followed by near lamellar TiAl alloys. HCF failure exhibited cleavage fracture morphologies, and multiple facets were generated in the crack initiation region of different TNM alloys. Two different crack initiation modes, subsurface crack nucleation and surface origin, were observed. Both crack initiation modes appeared in near lamellar alloys, while only subsurface crack initiation were obtained in the duplex (DP) alloy. It contributes to the high scatter of S-N data. The HCF failure of TNM alloys was dominated by crack nucleation rather than crack propagation. These findings could provide guidance for optimizing the microstructure and improving the HCF properties of TiAl alloys.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Project of Shaanxi

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference40 articles.

1. Advances and challenges of TiAl base alloys;Yang;Acta Metall. Sin.,2015

2. Intermetallic alloys based on gamma titanium aluminide

3. High-temperature structural intermetallics

4. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys

5. Development of High Nb Containing High Temperature TiAl Alloys;Chen,2003

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3