Vacuum Brazing Ti–15–3 with a TiNiNb Braze Alloy

Author:

Kao ,Tsay ,Wang ,Shiue

Abstract

Among all types of brazing fillers, Ti-based fillers show satisfactory joint strengths in brazing titanium alloys. However, the major concern in using such fillers is the formation of Cu/Ni/Ti intermetallic compound(s) in the joint. In this study, a Ti–15–3 alloy was vacuum brazed with a clad Ti–35Ni–25Nb foil. The brazed zone consisted of a Ti2Ni intermetallic compound in a (β-Ti,Nb)-rich matrix for specimen brazing at 1000 °C/600 s. Raising brazing temperature and time resulted in the Ti2Ni dissolving into the (β-Ti,Nb)-rich matrix. For the specimen brazing at 1100 °C/600s, Ti2Ni could only be observed at the grain boundaries of the (β-Ti,Nb)-rich matrix. After further raising it to 1200 °C/600 s, the Ti2Ni intermetallic compound was all dissolved into the (β-Ti,Nb)-rich phase. The average shear strength was significantly raised from 140 (1000 °C/600 s) to 620 MPa (1100 °C/3600 s). Crack initiation/propagation in the brittle Ti2Ni compound with the cleavage fractograph were changed into the Ti–15–3 base metal with a ductile dimple fractograph. The advantage of using Nb in the TiNiNb filler foil was its ability to stabilize β-Ti, and most of the Ni in the braze alloy was dissolved into the β-Ti matrix. The brazed joint could be free of any intermetallic phases with a proper brazing cycle applied, and the joint was suitable for a few harsh applications, e.g., repeated stresses and impact loadings.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3