Experimental Characterization of Laser Trepanned Microholes in Superalloy GH4220 with Water-Based Assistance

Author:

Wang Liang,Yang Huayu,Ren NaifeiORCID,Wu ZhengtianORCID,Xia Kaibo

Abstract

An experiment using water-assisted millisecond laser trepanning on superalloy GH4220 was carried out, and the effects of pulse energy on the hole entrance morphology, diameter, roundness, cross-section morphology, taper angle, sidewall roughness, and recast layer in air and with water-based assistance were compared and analyzed. The results show that, compared with the air condition, the water-based assistance improved the material removal rate and hole quality, increased the diameter of the hole entrance and exit, increased the hole roundness, decreased the hole taper angle, decreased the hole sidewall roughness, and reduced the recast layer thickness. In addition, under the combined action of water and steam inside the hole, the sidewall surface morphology quality was improved. Compared with the air condition, the spatter around the hole entrance was reduced, but the oxidation phenomenon formed by the thermal effect surrounding the hole entrance with water-based assistance was more obvious. The research provided technical support for the industrial application of millisecond laser drilling.

Funder

Jiangsu Industry University Research Cooperation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3