Dynamic and Functional Alterations of Neuronal Networks In Vitro upon Physical Damage: A Proof of Concept

Author:

Ayasreh SàlemORCID,Jurado ImanolORCID,López-León ClaraORCID,Montalà-Flaquer MarcORCID,Soriano JordiORCID

Abstract

There is a growing technological interest in combining biological neuronal networks with electronic ones, specifically for biological computation, human–machine interfacing and robotic implants. A major challenge for the development of these technologies is the resilience of the biological networks to physical damage, for instance, when used in harsh environments. To tackle this question, here, we investigated the dynamic and functional alterations of rodent cortical networks grown in vitro that were physically damaged, either by sequentially removing groups of neurons that were central for information flow or by applying an incision that cut the network in half. In both cases, we observed a remarkable capacity of the neuronal cultures to cope with damage, maintaining their activity and even reestablishing lost communication pathways. We also observed—particularly for the cultures cut in half—that a reservoir of healthy neurons surrounding the damaged region could boost resilience by providing stimulation and a communication bridge across disconnected areas. Our results show the remarkable capacity of neuronal cultures to sustain and recover from damage, and may be inspirational for the development of future hybrid biological–electronic systems.

Funder

European Union’s Horizon 2020 research and innovation programme

Spanish Ministerio de Ciencia e Innovación

Generalitat de Catalunya

“la Caixa” Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3