Quantifying the Contribution of Agricultural and Urban Non-Point Source Pollutant Loads in Watershed with Urban Agglomeration

Author:

Zong MinORCID,Hu Yuanman,Liu MiaoORCID,Li ChunlinORCID,Wang Cong,Liu Jianxin

Abstract

Urban agglomeration is a new characteristic of the Chinese urbanization process, and most of the urban agglomeration is located in the same watershed. Thus, urban non-point source (NPS) pollution, especially the characteristic pollutants in urban areas, aggravates NPS pollution at the watershed scale. Many agricultural studies have been performed at the watershed scale; however, few studies have provided a study framework for estimating the urban NPS pollution in an urban catchment. In this study, an integrated approach for estimating agricultural and urban NPS pollution in an urban agglomeration watershed was proposed by coupling the Soil and Water Assessment Tool (SWAT), the event mean concentration (EMC) method and the Storm Water Management Model (SWMM). The Hun-Taizi River watershed, which contains a typical urban agglomeration and is located in northeastern China, was chosen as the study case. The results indicated that the per unit areas of total nitrogen (TN) and total phosphorus (TP) in the built-up area simulated by the EMC method were 11.9% and 23 times higher than the values simulated by the SWAT. The SWAT greatly underestimated the nutrient yield in the built-up area. This integrated method could provide guidance for water environment management plans considering agricultural and urban NPS pollution in an urban catchment.

Funder

National Natural Science Foundation of China

China National R & D Program “Ecological Risk Management and Spatial Pattern Optimization in Urban Area

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3