Predicting BOD under Various Hydrological Conditions in the Dongjin River Basin Using Physics-Based and Data-Driven Models

Author:

Lee EunjeongORCID,Kim Taegeun

Abstract

The water quality of the Dongjin River deteriorates during the irrigation period because the supply of river maintenance water to the main river is cut off by the mass intake of agricultural weirs located in the midstream regions. A physics-based model and a data-driven model were used to predict the water quality in the Dongjin River under various hydrological conditions. The Hydrological Simulation Program–Fortran (HSPF), which is a physics-based model, was constructed to simulate the biological oxygen demand (BOD) in the Dongjin River Basin. A Gamma Test was used to derive the optimal combinations of the observed variables, including external water inflow, water intake, rainfall, and flow rate, for irrigation and non-irrigation periods. A data-driven adaptive neuro-fuzzy inference system (ANFIS) model was then built using these results. The ANFIS model built in this study was capable of predicting the BOD from the observed hydrological data in the irrigation and non-irrigation periods, without running the physics-based model. The predicted results have high confidence levels when compared with the observed data. Thus, the proposed method can be used for the reliable and rapid prediction of water quality using only monitoring data as input.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference24 articles.

1. Prediction of water quality change in Saemangeum reservoir by floodgate operation at upstream;Kim;J. Korea Water Resour. Assoc.,2017

2. A hybrid neural network and ARIMA model for water quality time series prediction

3. Data-driven modeling for water quality prediction case study: The drains system associated with Manzala Lake, Egypt

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3