CaAIS: Cellular Automata-Based Artificial Immune System for Dynamic Environments

Author:

Rezvanian Alireza1ORCID,Vahidipour S. Mehdi2ORCID,Saghiri Ali Mohammad3ORCID

Affiliation:

1. Department of Computer Engineering, University of Science and Culture, Tehran 1461968151, Iran

2. Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan 8731753153, Iran

3. Department of Computer Science, William Paterson University, Wayne, NJ 07470, USA

Abstract

Artificial immune systems (AIS), as nature-inspired algorithms, have been developed to solve various types of problems, ranging from machine learning to optimization. This paper proposes a novel hybrid model of AIS that incorporates cellular automata (CA), known as the cellular automata-based artificial immune system (CaAIS), specifically designed for dynamic optimization problems where the environment changes over time. In the proposed model, antibodies, representing nominal solutions, are distributed across a cellular grid that corresponds to the search space. These antibodies generate hyper-mutation clones at different times by interacting with neighboring cells in parallel, thereby producing different solutions. Through local interactions between neighboring cells, near-best parameters and near-optimal solutions are propagated throughout the search space. Iteratively, in each cell and in parallel, the most effective antibodies are retained as memory. In contrast, weak antibodies are removed and replaced with new antibodies until stopping criteria are met. The CaAIS combines cellular automata computational power with AIS optimization capability. To evaluate the CaAIS performance, several experiments have been conducted on the Moving Peaks Benchmark. These experiments consider different configurations such as neighborhood size and re-randomization of antibodies. The simulation results statistically demonstrate the superiority of the CaAIS over other artificial immune system algorithms in most cases, particularly in dynamic environments.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3