Evaluation of the MODIS LAI/FPAR Algorithm Based on 3D-RTM Simulations: A Case Study of Grassland

Author:

Pu Jiabin,Yan KaiORCID,Zhou Guohuan,Lei Yongqiao,Zhu Yingxin,Guo Donghou,Li Hanliang,Xu Linlin,Knyazikhin Yuri,Myneni Ranga B.

Abstract

Uncertainty assessment of the moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by vegetation (FPAR) retrieval algorithm can provide a scientific basis for the usage and improvement of this widely-used product. Previous evaluations generally depended on the intercomparison with other datasets as well as direct validation using ground measurements, which mix the uncertainties from the model, inputs, and assessment method. In this study, we adopted the evaluation method based on three-dimensional radiative transfer model (3D RTM) simulations, which helps to separate model uncertainty and other factors. We used the well-validated 3D RTM LESS (large-scale remote sensing data and image simulation framework) for a grassland scene simulation and calculated bidirectional reflectance factors (BRFs) as inputs for the LAI/FPAR retrieval. The dependency between LAI/FPAR truth and model estimation serves as the algorithm uncertainty indicator. This paper analyzed the LAI/FPAR uncertainty caused by inherent model uncertainty, input uncertainty (BRF and biome classification), clumping effect, and scale dependency. We found that the uncertainties of different algorithm paths vary greatly (−6.61% and +84.85% bias for main and backup algorithm, respectively) and the “hotspot” geometry results in greatest retrieval uncertainty. For the input uncertainty, the BRF of the near-infrared (NIR) band has greater impacts than that of the red band, and the biome misclassification also leads to nonnegligible LAI/FPAR bias. Moreover, the clumping effect leads to a significant LAI underestimation (−0.846 and −0.525 LAI difference for two clumping types), but the scale dependency (pixel size ranges from 100 m to 1000 m) has little impact on LAI/FPAR uncertainty. Overall, this study provides a new perspective on the evaluation of LAI/FPAR retrieval algorithms.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

1. Modeling spectral and bidirectional soil reflectance

2. Defining leaf area index for non-flat leaves

3. Systematic observation requirements for satellite-based products for climate. 2011 update supplemetnatl details to the satellite 39 based component og the implementation plan for the global observing system for climate in support of the unfccc (2010 update),2011

4. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data

5. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3