Novel Credal Decision Tree-Based Ensemble Approaches for Predicting the Landslide Susceptibility

Author:

Arabameri Alireza,Karimi-Sangchini Ebrahim,Pal Subodh ChandraORCID,Saha AsishORCID,Chowdhuri Indrajit,Lee SaroORCID,Tien Bui DieuORCID

Abstract

Landslides are natural and often quasi-normal threats that destroy natural resources and may lead to a persistent loss of human life. Therefore, the preparation of landslide susceptibility maps is necessary in order to mitigate harmful effects. The key objective of this research is to develop landslide susceptibility maps for the Taleghan basin of Alborz province, Iran, using hybrid Machine Learning (ML) algorithms, i.e., k-fold cross validation and ML techniques of credal decision tree (CDT), Alternative Decision Tree (ADTree), and their ensemble method (CDT-ADTree), which have been state-of-the-art soft computing techniques rarely used in the case of landslide susceptibility assessments. In this study, 22 key landslide causative factors (LCFs) were considered to explore their spatial relationship to landslides, based on local geomorphological and geo-environmental influences. The Random Forest (RF) algorithm was used for the identification of variables importance of different LCFs that are more prone to landslide susceptibility. A receiver operation characteristics (ROC) curve with area under the curve (AUC), accuracy, precision, and robustness index was used to evaluate and compare landslide susceptibility models. The output of the model performance shows that the CDT-ADTree model is the more robust model for the landslide susceptibility where the AUC, accuracy, and precision are 0.981, 0.837, and 0.867, respectively, than the standalone model of CDT and ADTree model. Therefore, it is concluded that the CDT-ADTree ensemble model can be applied as a new promising technique for spatial prediction of the landslide in further studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3