Abstract
Landslides are natural and often quasi-normal threats that destroy natural resources and may lead to a persistent loss of human life. Therefore, the preparation of landslide susceptibility maps is necessary in order to mitigate harmful effects. The key objective of this research is to develop landslide susceptibility maps for the Taleghan basin of Alborz province, Iran, using hybrid Machine Learning (ML) algorithms, i.e., k-fold cross validation and ML techniques of credal decision tree (CDT), Alternative Decision Tree (ADTree), and their ensemble method (CDT-ADTree), which have been state-of-the-art soft computing techniques rarely used in the case of landslide susceptibility assessments. In this study, 22 key landslide causative factors (LCFs) were considered to explore their spatial relationship to landslides, based on local geomorphological and geo-environmental influences. The Random Forest (RF) algorithm was used for the identification of variables importance of different LCFs that are more prone to landslide susceptibility. A receiver operation characteristics (ROC) curve with area under the curve (AUC), accuracy, precision, and robustness index was used to evaluate and compare landslide susceptibility models. The output of the model performance shows that the CDT-ADTree model is the more robust model for the landslide susceptibility where the AUC, accuracy, and precision are 0.981, 0.837, and 0.867, respectively, than the standalone model of CDT and ADTree model. Therefore, it is concluded that the CDT-ADTree ensemble model can be applied as a new promising technique for spatial prediction of the landslide in further studies.
Subject
General Earth and Planetary Sciences
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献