Establishment and Preliminary Application of the Forward Modeling Method for Doppler Spectral Density of Ice Particles

Author:

Ding Han,Liu Liping

Abstract

Owing to the various shapes of ice particles, the relationships between fall velocity, backscattering cross-section, mass, and particle size are complicated. This affects the application of cloud radar Doppler spectral density data in the retrieval of the microphysical properties of ice crystals. In this study, under the assumption of six particle shape types, the relationships between particle mass, fall velocity, backscattering cross-section, and particle size were established based on existing research. Variations of Doppler spectral density with the same particle size distribution (PSD) of different ice particle types are discussed. The radar-retrieved liquid and ice PSDs, water content, and mean volume-weighted particle diameter were compared with airborne in situ observations in the Xingtai, Hebei Province, China, in 2018. The results showed the following. (1) For the particles with the same equivalent diameter (De), the fall velocity of the aggregates was the largest, followed by hexagonal columns, hexagonal plates, sector plates, and stellar crystals, with the ice spheres falling two to three times faster than ice crystals with the same De. Hexagonal columns had the largest backscattering cross-section, followed by stellar crystals and sector plates, and the backscattering cross-sections of hexagonal plates and the two types of aggregates were very close to those of ice spheres. (2) The width of the simulated radar Doppler spectral density generated by various ice crystal types with the same PSD was mainly affected by the particle’s falling velocity, which increased with the particle size. Turbulence had different degrees of influence on the Doppler spectrum of different ice crystals, and it also brought large errors to the PSD retrieval. (3) PSD comparisons showed that each ice crystal type retrieved from the cloud radar corresponded well to aircraft observations within a certain scale range, when assuming that only a certain type of ice crystals existed in the cloud, which could fully prove the feasibility of retrieving ice PSDs from the reflectivity spectral density.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3