Influence of the Tikhonov Regularization Parameter on the Accuracy of the Inverse Problem in Electrocardiography

Author:

Wang Tiantian1ORCID,Karel Joël1ORCID,Bonizzi Pietro1ORCID,Peeters Ralf L. M.1ORCID

Affiliation:

1. Department of Advanced Computing Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

Abstract

The electrocardiogram (ECG) is the standard method in clinical practice to non-invasively analyze the electrical activity of the heart, from electrodes placed on the body’s surface. The ECG can provide a cardiologist with relevant information to assess the condition of the heart and the possible presence of cardiac pathology. Nonetheless, the global view of the heart’s electrical activity given by the ECG cannot provide fully detailed and localized information about abnormal electrical propagation patterns and corresponding substrates on the surface of the heart. Electrocardiographic imaging, also known as the inverse problem in electrocardiography, tries to overcome these limitations by non-invasively reconstructing the heart surface potentials, starting from the corresponding body surface potentials, and the geometry of the torso and the heart. This problem is ill-posed, and regularization techniques are needed to achieve a stable and accurate solution. The standard approach is to use zero-order Tikhonov regularization and the L-curve approach to choose the optimal value for the regularization parameter. However, different methods have been proposed for computing the optimal value of the regularization parameter. Moreover, regardless of the estimation method used, this may still lead to over-regularization or under-regularization. In order to gain a better understanding of the effects of the choice of regularization parameter value, in this study, we first focused on the regularization parameter itself, and investigated its influence on the accuracy of the reconstruction of heart surface potentials, by assessing the reconstruction accuracy with high-precision simultaneous heart and torso recordings from four dogs. For this, we analyzed a sufficiently large range of parameter values. Secondly, we evaluated the performance of five different methods for the estimation of the regularization parameter, also in view of the results of the first analysis. Thirdly, we investigated the effect of using a fixed value of the regularization parameter across all reconstructed beats. Accuracy was measured in terms of the quality of reconstruction of the heart surface potentials and estimation of the activation and recovery times, when compared with ground truth recordings from the experimental dog data. Results show that values of the regularization parameter in the range (0.01–0.03) provide the best accuracy, and that the three best-performing estimation methods (L-Curve, Zero-Crossing, and CRESO) give values in this range. Moreover, a fixed value of the regularization parameter could achieve very similar performance to the beat-specific parameter values calculated by the different estimation methods. These findings are relevant as they suggest that regularization parameter estimation methods may provide the accurate reconstruction of heart surface potentials only for specific ranges of regularization parameter values, and that using a fixed value of the regularization parameter may represent a valid alternative, especially when computational efficiency or consistency across time is required.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Standardized 2D atrial mapping and its clinical applications;Computers in Biology and Medicine;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3