General Current Control of Six-Phase-Based Non-Isolated Integrated On-Board Charger with Low Order Harmonic Compensation

Author:

Abdel-Majeed Mahmoud S.ORCID,Shawier Abdullah,Abdel-Khalik Ayman S.ORCID,Hamad Mostafa S.ORCID,Sedky Mohamed M.,Elmalhy Noha A.

Abstract

Electric vehicle charging technology has recently witnessed massive developments due to its significant role in the ever-growing number of electric vehicles on the market. The integrated on-board charger technology (IOBC) represents an effective and attractive solution to reduce EV size, cost, and weight. IOBC technology employs propulsion components, such as the motor and its converter, in the charging process. The main objective of IOBC is to achieve the maximum charging current with zero average/pulsating torque so that mechanical interlocking can be dispensed. Recently, some of the IOBC topologies have adopted machines with six-phase stators to exploit the many advantages of multiphase-based systems. This paper investigates the effect of the winding design, namely, chorded or un-chorded designs, as well as the winding configuration, namely, dual three-phase, asymmetrical, or symmetrical winding configurations, on the current quality of a six-phase-based non-isolated IOBC. The relation between the winding design and the induced low order harmonics in the charging current is first clarified. The required current controller structure is then proposed, which ensures balanced grid line currents with high quality, under either healthy or one-phase fault conditions. Finally, a comparative study between all available designs with the proposed current controller is carried out to validate the theoretical findings.

Funder

ITIDAs

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3