Tree- and Stand-Level Biomass Estimation in a Larix decidua Mill. Chronosequence

Author:

Jagodziński Andrzej,Dyderski Marcin,Gęsikiewicz Kamil,Horodecki PawełORCID

Abstract

Carbon pool assessments in forests is one of the most important tasks of forest ecology. Despite the wide cultivation range, and economical and traditional importance, the aboveground biomass of European larch (Larix decidua Mill.) stands is poorly characterized. To increase knowledge about forest biomass accumulation and to provide a set of tools for aboveground biomass estimation, we studied a chronosequence of 12 larch forest stands (7–120 years old). From these stands, we measured the biomass of 96 sample trees ranging from 1.9 to 57.9 cm in diameter at breast height. We provided age-specific and generalized allometric equations, biomass conversion and expansion factors (BCEFs) and biomass models based on forest stand characteristics. Aboveground biomass of stands ranged from 4.46 (7-year-old forest stand) to 445.76 Mg ha−1 (106-year-old). Stand biomass increased with increasing stand age, basal area, mean diameter, height and total stem volume and decreased with increasing density. BCEFs of the aboveground biomass and stem were almost constant (mean BCEFs of 0.4688 and 0.3833 Mg m−3, respectively). Our generalized models at the tree and stand level had lower bias in predicting the biomass of the forest stands studied, than other published models. The set of tools provided fills the gap in biomass estimation caused by the low number of studies on larch biomass, which allows for better estimation of forest carbon pools.

Publisher

MDPI AG

Subject

Forestry

Reference62 articles.

1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

2. Global climate change impacts on forests and markets

3. Consequences of climate change on the tree of life in Europe

4. A Large and Persistent Carbon Sink in the World’s Forests

5. Europe’s forest management did not mitigate climate warming

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3