Quantifying Physiological Biomarkers of a Microwave Brain Stimulation Device

Author:

Hussain IqramORCID,Young Seo,Kim Chang Ho,Benjamin Ho Chee Meng,Park Se Jin

Abstract

Physiological signals are immediate and sensitive to neural and cardiovascular change resulting from brain stimulation, and are considered as a quantifying tool with which to evaluate the association between brain stimulation and cognitive performance. Brain stimulation outside a highly equipped, clinical setting requires the use of a low-cost, ambulatory miniature system. The purpose of this double-blind, randomized, sham-controlled study is to quantify the physiological biomarkers of the neural and cardiovascular systems induced by a microwave brain stimulation (MBS) device. We investigated the effect of an active MBS and a sham device on the cardiovascular and neurological responses of ten volunteers (mean age 26.33 years, 70% male). Electroencephalography (EEG) and electrocardiography (ECG) were recorded in the initial resting-state, intermediate state, and the final state at half-hour intervals using a portable sensing device. During the experiment, the participants were engaged in a cognitive workload. In the active MBS group, the power of high-alpha, high-beta, and low-beta bands in the EEG increased, and the power of low-alpha and theta waves decreased, relative to the sham group. RR Interval and QRS interval showed a significant association with MBS stimulation. Heart rate variability features showed no significant difference between the two groups. A wearable MBS modality may be feasible for use in biomedical research; the MBS can modulate the neurological and cardiovascular responses to cognitive workload.

Funder

UNITECH CO.,LTD

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3