Hydrological Forecasting under Climate Variability Using Modeling and Earth Observations in the Naryn River Basin, Kyrgyzstan

Author:

Pamirbek kyzy Merim,Chen Xi,Liu TieORCID,Duulatov EldiiarORCID,Gafurov Akmal,Omorova Elvira,Gafurov AbrorORCID

Abstract

The availability of water resources in Central Asia depends greatly on snow accumulation in the mountains of Tien-Shan and Pamir. It is important to precisely forecast water availability as it is shared by several countries and has a transboundary context. The impact of climate change in this region requires improving the quality of hydrological forecasts in the Naryn river basin. This is especially true for the growing season due to the unpredictable climate behavior. A real-time monitoring and forecasting system based on hydrological watershed models is widely used for forecast monitoring. The study’s main objective is to simulate hydrological forecasts for three different hydrological stations (Uch-Terek, Naryn, and Big-Naryn) located in the Naryn river basin, the main water formation area of the Syrdarya River. We used the MODSNOW model to generate statistical forecast models. The model simulates the hydrological cycle using standard meteorological data, discharge data, and remote sensing data based on the MODIS snow cover area. As for the forecast at the monthly scale, the model considers the snow cover conditions at separate elevation zones. The operation of a watershed model includes the effects of climate change on river dynamics, especially snowfall and its melting processes in different altitude zones of the Naryn river basin. The linear regression models were produced for monthly and yearly hydrological forecasts. The linear regression shows R2 values of 0.81, 0.75, and 0.77 (Uch-Terek, Naryn, and Big-Naryn, respectively). The correlation between discharge and snow cover at various elevation zones was used to examine the relationship between snow cover and the elevation of the study. The best correlation was in May, June, and July for the elevation ranging from 1000–1500 m in station Uch-Terek, and 1500–3500 m in stations Naryn and Big-Naryn. The best correlation was in June: 0.87; 0.76; 0.84, and May for the elevation ranging from 1000–3500 m in station Uch-Terek, and 2000–3000 m in stations Naryn and Big-Naryn. Hydrological forecast modeling in this study aims to provide helpful information to improve our under-standing that the snow cover is the central aspect of water accumulation.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3