Long-Term EEG Component Analysis Method Based on Lasso Regression

Author:

Bo HongjianORCID,Li Haifeng,Wu Boying,Li Hongwei,Ma Lin

Abstract

At present, there are very few analysis methods for long-term electroencephalogram (EEG) components. Temporal information is always ignored by most of the existing techniques in cognitive studies. Therefore, a new analysis method based on time-varying characteristics was proposed. First of all, a regression model based on Lasso was proposed to reveal the difference between acoustics and physiology. Then, Permutation Tests and Gaussian fitting were applied to find the highest correlation. A cognitive experiment based on 93 emotional sounds was designed, and the EEG data of 10 volunteers were collected to verify the model. The 48-dimensional acoustic features and 428 EEG components were extracted and analyzed together. Through this method, the relationship between the EEG components and the acoustic features could be measured. Moreover, according to the temporal relations, an optimal offset of acoustic features was found, which could obtain better alignment with EEG features. After the regression analysis, the significant EEG components were found, which were in good agreement with cognitive laws. This provides a new idea for long-term EEG components, which could be applied in other correlative subjects.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference46 articles.

1. Affective Computing;Picard,1997

2. Control based on brain-computer interface technology for video-gaming with virtual reality techniques;Paszkiel;J. Autom. Mob. Robot. Intell. Syst.,2016

3. Emotional responses to music: The need to consider underlying mechanisms

4. Research Progresses in Music Emotion Recognition;Chen;J. Fudan Univ.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3