Effects of Dietary Microcapsule Sustained-Release Sodium Butyrate on the Growth Performance, Immunity, and Gut Microbiota of Yellow Broilers

Author:

Dai Zhenglie1ORCID,Wang Xiuxi1,Liu Yulan2ORCID,Liu Jinsong2,Xiao Shiping2,Yang Caimei2,Zhong Yifan1ORCID

Affiliation:

1. College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China

2. Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China

Abstract

The beneficial effects of butyric acid in poultry production are well documented, while the relationship between sodium butyrate (SB) and microcapsule sustained-release sodium butyrate (MSSB), especially in yellow broilers, remains poorly investigated. This study was designed to elucidate the function as well as the potential mechanisms of SB and MSSB in enhancing health in yellow broilers. In total, 360 one-day-old yellow broilers were allocated to three treatment groups. The control group (CON) received a basic diet, while the SB group was provided with 1000 mg/kg of sodium butyrate (SB), and the MSSB received microcapsule sustained-release sodium butyrate (MSSB), all over a period of 56 days. Compared to the CON group, the dietary supplementation of both SB and MSSB showed a lower feed:gain ratio (p < 0.01). No significant (p > 0.05) difference in antioxidant capacity was observed between the three groups. We observed significantly higher levels (p < 0.05) of immunoglobulins and a reduction in concentrations in both the SB and MSSB groups compared to the CON group. Furthermore, both SB and MSSB induced alterations in the diversity, structure, and function of gut microbiota. MSSB demonstrated even more pronounced beneficial effects than SB, particularly in regard to the serum IgA level (p = 0.05), cecal isovalerate concentration (p < 0.05), and villus height (p < 0.01). The sequencing of the gut microbiota revealed that MSSB led to a significant increase in the relative abundance of Clostridia UCG-014, Bacilli RF39, and Oscillospiraceae UCG-005. Predictions of bacterial function indicated changes in KEGG pathways, including an enrichment of tryptophan metabolism (ko00380), and a reduction in fructose and mannose metabolism (ko00051), chloroalkane and chloroalkene degradation (ko00625), and naphthalene degradation (ko00626) in yellow broilers fed with MSSB. Among these, the mediation analysis revealed a causal effect between the Clostridia UCG-014 in the gut and serum IgA, with tryptophan metabolism being a key mediator in this relationship. Our results suggest that dietary MSSB can improve the growth performance, immunity, and gut microbiota of yellow broilers. MSSB increased the abundance of Clostridia UCG-014 and activated the tryptophan metabolism pathway (ko00380), contributing to IgA levels in yellow broilers through this mechanism.

Funder

Leading Innovation and Entrepreneurship Team Project of Zhejiang Province

Zhejiang Provincial Key R&D Program of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3