Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks

Author:

Conde-Cid Manuel,Núñez-Delgado AvelinoORCID,Fernández-Sanjurjo MaríaORCID,Álvarez-Rodríguez EsperanzaORCID,Fernández-Calviño DavidORCID,Arias-Estévez ManuelORCID

Abstract

Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health. Taking all this into account, a literature review was conducted in order to shed light on the current knowledge about the occurrence of tetracycline and sulfonamide antibiotics in manures/slurries and agricultural soils, as well as on their fate in the environment. For that, the adsorption/desorption and the degradation (both abiotic and biotic) processes of these pollutants in soils were deeply discussed. Finally, the potential risks of deleterious effects on human and ecological health associated with the presence of these antibiotic residues were assessed. This review contributes to a deeper understanding of the lifecycle of tetracycline and sulfonamide antibiotics in the environment, thus facilitating decision-making for the application of preventive and mitigation measures to reduce its negative impacts and risks to public health.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3