Abstract
Xylindein, a stable quinonic blue-green fungal pigment, has shown potential for use not only as a colorant but also as an (opto)electronic material. As no method presently exists to synthesize the pigment, organic production by slow-growing fungi from the genus Chlorociboria is the only method to obtain it. This has resulted in limited quantities of impure xylindein, hampering research. In order to improve quantity and quality of pigment for optoelectronic applications, speed of xylindein production by Chlorociboria aeruginosa and its relative purity were compared across liquid and solid-state fermentation conditions on selected nutrient sources. Liquid 2% malt shaking cultures produced the same amount of pigment in 5 weeks that previous testing produced in 2 months. Xylindein generation speed, purity, and conductive properties of produced pigment for (opto)electronics was then compared between two Chlorociboria species native to North America, Chlorociboria aeruginosa and Chlorociboria aeruginascens. Differences were seen in the conductivity of extracted pigment between species and strains, with xylindein from C. aeruginascens strain UAMH 7614 producing films with the highest effective electron mobility. The identification of the most effective growth conditions and the strain with highest purity xylindein production should support further development of sustainable organic (opto)electronics. Future work identifying new strains with reduced production of interfering metabolites and new extraction methodologies will help to produce very low cost xylindein, supporting sustainable technologies based on the pigment.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献