New Approach for Using of Mentha longifolia L. and Citrus reticulata L. Essential Oils as Wood-Biofungicides: GC-MS, SEM, and MNDO Quantum Chemical Studies

Author:

Ali Hayssam M.ORCID,Elgat Wael A. A. AboORCID,EL-Hefny MervatORCID,Salem Mohamed Z. M.ORCID,Taha Ayman S.ORCID,Al Farraj Dunia A.,Elshikh Mohamed S.,Hatamleh Ashraf A.,Abdel-Salam Eslam M.ORCID

Abstract

Background: Fungi growing on wood cause deterioration of stored food materials or discoloration of the wood itself, and the search for new and safe bioagents is recently needed. Methods: Essential oils (EOs) from aerial parts from Mentha longifolia L. and Citrus reticulata L., analyzed by gas chromatography-mass spectrometry (GC-MS), were tested for their antifungal activity by the vapor method against four common fungi, Aspergillus flavus, A. niger, A. fumigatus, and Fusarium culmorum, and confirmed by SEM examination as the oils applied on wood samples. Results: The most abundant compounds identified in the EO from M. longifolia were menthone and eucalyptol; in C. reticulata EO, they were β-caryophyllene, β-caryophyllene oxide, and β-elemene. EOs from M. longifolia and C. reticulata, at 500 and 250 µL/mL, showed potent antifungal activity against A. flavus and A. fumigatus, with 100% fungal mycelial inhibition growth (FMIG). C. reticulata and M. longifolia EOs, at 125 µL/mL, observed FMIG values of 98% and 95%, respectively, against A. fumigatus. M. longifolia EO, at 500 and 250 µL/mL, showed potent activity against A. niger, with 100% FMIG. F. culmorum completely inhibited (100% FMIG) EOs from M. longifolia and C. reticulata applied at 500 µL/mL. Pinus roxburghii Sarg. Wood, treated with M. longifolia at 125 µL/mL, showed inhibition zone values of 7.33 and 21.33 mm against A. flavus and A. niger, respectively. Conclusions: Both oils possessed good wood-biofungicide activity with the vapor method, as clearly shown by the SEM examination. These activities suggest their possible use as natural wood preservatives.

Funder

Deanship of Scientific Research at King Saud University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3