Electrochemical and X-ray Examinations of Erosion Products during Dressing of Superhard Grinding Wheels Using Alternating Current and Ecological Electrolytes of Low Concentration of Chemical Compounds

Author:

Gołąbczak MarcinORCID,Gołąbczak Andrzej,Tomczyk Barbara

Abstract

This article introduces significant cognitive and usable values in the field of abrasive technology especially in the development of new methods of the electrochemical dressing of superhard grinding wheels with metal bonds. Cognitive values mainly concern the elaboration of the theoretical backgrounds of the electrochemical digestion of compounds of grinding wheel metal bond and gumming up products of the cutting surface of grinding wheel (CSGW). Cognitive values also deal with determining the mathematical relationships describing the influence of technological conditions of dressing on shaping of cutting abilities of superhard grinding wheels. On the other hand, the useful values refer to the industry implementation of the elaborated method and equipment for the electrochemical dressing of suparhard grinding wheels using alternating current (ECDGW-AC). The cost of the device for the realization of this process is low and can be applied in the production conditions. The novel achievements presented in the article are: the elaboration of a new method and equipment for electrochemical dressing of superhard grinding wheels (ECDGW-AC), the selection of electrolytes of low concentration of chemical compounds, tests concerning the digestion of grinding wheel metal bond compounds and gumming up products of CSGW using X-ray analysis, as well as the determination of chemical reactions taking place during elaborated new dressing process, the elaboration of mathematical relationships describing influence of technological conditions of this process on dressing speed and shaping of cutting abilities of superhard grinding wheels, and the performance of technological tests of dressing of superhard grinding wheels using ECDGW-AC method. The elaborated method can be used in ambient temperature and does not cause thermal damages of abrasive grains of cutting surface of grinding wheel and is useful not only for dressing super hard grinding wheels but also for correcting their geometrical deviations.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of electrochemical dressing and electrodischarge profiling of superhard grinding wheels;AIP Conference Proceedings;2024

2. Research on the Processes of Electrochemical and Electrodischarge Dressing of Superhard Grinding Wheels;SpringerBriefs in Applied Sciences and Technology;2024

3. Methods of Dressing Superhard Grinding Wheels;SpringerBriefs in Applied Sciences and Technology;2024

4. Methods for Assessing the Cutting Ability of Superhard Grinding Wheels;SpringerBriefs in Applied Sciences and Technology;2024

5. Characteristics of Superhard Grinding Wheels with Metal Bond;SpringerBriefs in Applied Sciences and Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3