A Comprehensive Survey on Local Differential Privacy toward Data Statistics and Analysis

Author:

Wang TengORCID,Zhang XuefengORCID,Feng Jingyu,Yang Xinyu

Abstract

Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user’s data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RAMPART: Reinforcing Autonomous Multi-Agent Protection through Adversarial Resistance in Transportation;ACM Journal on Autonomous Transportation Systems;2024-08-09

2. Streaming Data Collection With a Private Sketch-Based Protocol;IEEE Internet of Things Journal;2024-08-01

3. From Theory to Comprehension: A Comparative Study of Differential Privacy and k-Anonymity;Proceedings of the Fourteenth ACM Conference on Data and Application Security and Privacy;2024-06-19

4. An Efficient Heap Tree-Based Range Query Scheme Under Local Differential Privacy;IEEE Internet of Things Journal;2024-06-01

5. Twofer: Ambiguous Transmissions for Low-Latency Sensor Networks Facing Noise, Privacy and Loss;2024 23rd ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3