Abstract
Dust control is one of the most difficult challenges for underground coal mine operators, especially longwall mine operators. The most widely used dust control technologies at a longwall section are ventilation air and water sprays, whereas a continuous miner section has the added advantage of having a dust scrubber built into the continuous miner. To test the potential benefits of integrating a flooded-bed scrubber into a longwall shearer, the authors designed and built a dust scrubber system for a full-scale mock-up of a longwall shearer. The mock-up was installed in the longwall test gallery at the Pittsburgh Research Laboratory (PRL) for testing. Air quantity surveys were performed at different cross-sections of the test gallery at a fixed face-air quantity, but at different scrubber airflow rates to quantify the distribution of air in the test gallery. Subsequently, a computational fluid dynamics (CFD) model of the PRL test gallery was developed and validated. In this study, the effect of the flooded-bed scrubber on airflow pattern in the test gallery is investigated using the validated CFD model. This model can be used further to predict the dust capture efficiency of the scrubber and to develop new techniques to reduce dust concentration in longwall sections.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献