Abstract
The paper presents a proposed framework to optimize the tuned mass damper (TMD) design, useful for seismic improvement of slender masonry structures. A historical masonry chimney located in northern Italy was considered to illustrate the proposed TMD design procedure and to evaluate the seismic performance of the system. The optimization process was subdivided into two fundamental phases. In the first phase, the main TMD parameters were defined starting from the dynamic behavior of the chimney by finite element modeling (FEM). A series of linear time-history analyses were carried out to point out the structural improvements in terms of top displacement, base shear, and bending moment. In the second phase, masonry’s nonlinear behavior was considered, and a fiber model of the chimney was implemented. Pushover analyses were performed to obtain the capacity curve of the structure and to evaluate the performance of the TMD. The results of the linear and nonlinear analysis reveal the effectiveness of the proposed TMD design procedure for slender masonry structures.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献