Abstract
(1) Background: The purpose of this study was to investigate the effects of a rounded heel shoe (RHS) and rounded lateral heel shoe (RLHS) on impact and lower extremity stability as well as their relationships with comfort during running. (2) Methods: Twenty healthy male adults participated in the study. The data were collected using eight infrared cameras while participants were running at a speed of 2.7 m/s in three shoe conditions on an instrumented treadmill. (3) Results: The peak vertical ground reaction force (PVGRF) was statistically smaller for the RHS and RLHS compared with the normal shoes (NS) (p < 0.05). The range of motion of inversion–eversion at the ankle joint was statistically smaller for the RLHS compared with the NS and RHS (p < 0.05). Increased dorsiflexion of the ankle joint at heel contact was negatively related to the comfort of a running shoe, and increased dorsi-plantarflexion ROM was positively related to comfort. (4) Conclusions: Based on these results, a curved heel shape of a running shoe may provide a positive influence on the biomechanical function and the comfort of running shoes. Future study, including measurements of lower extremity muscle activations and long-term comfort, would be beneficial to help validate current findings and develop further applications.
Funder
National Research Foundation of Korea
LS Networks
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献