Energy Characteristics of Full Tubular Pump Device with Different Backflow Clearances Based on Entropy Production

Author:

Meng Fan,Li Yanjun,Pei JiORCID

Abstract

In this study, the entropy theory was used as the evaluation standard of energy dissipation, and the effect of backflow clearance (the gap between motor rotor and motor shell) on energy characteristics of a full tubular pump was investigated by 3D unsteady flow simulation. The calculated results validated through testing shows that backflow clearance produces additional head loss and the rotation of the motor rotor requires more shaft power. The additional energy losses lead to a significant decline in the efficiency of tubular pump device. Under design conditions, the total dissipation of backflow clearance, rear guide vane, and outlet passage decreases with the increase of clearance radius, but that of the impeller decreases first and then rises with the increase of clearance radius. In addition, the increase of the clearance radius leads to disorderly flow pattern in the impeller. The total dissipation rate on the impeller suction side and near the impeller inlet increases with the increase of backflow clearance radius, but that on the impeller suction side decreases with the increase of backflow clearance radius. The total dissipation rate of the suction side of the guide vane and the wall of the outlet passage decreases with the increase of backflow clearance radius. This work can provide an intuitive analysis of the energy dissipation caused by backflow clearance and reference for engineering applications of full tubular pump.

Funder

Natural Science Foundation of China

Primary Research & Development Plan of Shandong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3