FEM-CFD Simulation and Experimental Study of Compound Parabolic Concentrator (CPC) Solar Collectors with and without Fins for Residential Applications

Author:

Barrón-Díaz Javier E.,Flores-Johnson Emmanuel A.ORCID,Chan-Colli Danny G.ORCID,Koh-Dzul J. Francisco,Bassam AliORCID,Patiño-Lopez Luis D.ORCID,Carrillo Jose G.ORCID

Abstract

Compound parabolic concentrator (CPC) solar collectors are widely used for solar energy systems in industry; however, CPC collectors for residential applications have not been fully investigated. In this work, the thermal performance of non-tracking, small-size and low-cost CPC collectors with an absorber with and without segmented fins was studied experimentally and by means of a proposed numerical methodology that included ray tracing simulation and a coupled heat transfer finite element method (FEM)-computational fluid dynamics (CFD) simulation, which was validated with experimental data. The experimental results showed that the CPC with a finned absorber has better thermal performance than that of the CPC with absorber without fins, which was attributed to the increase in thermal energy on the absorber surface. The numerical results showed that ray tracing simulation can be used to estimate the heat flux on the absorber surface and the FEM-CFD simulation can be used to estimate the heat transfer from the absorber to the water running through the pipe along with its temperature. The numerical results showed that mass flow rate is an important parameter for the design of the CPC collectors. The numerical methodology developed in this work was capable of describing the thermal performance of the CPC collectors and can be used for the modeling of the thermal behavior of other CPCs solar systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3