3D Snow Sculpture Reconstruction Based on Structured-Light 3D Vision Measurement

Author:

Liu Wancun,Zhang Liguo,Zhang Xiaolin,Han Lianfu

Abstract

Structured-light technique is an effective method for indoor 3D measurement, but it is hard to obtain ideal results outdoors because of complex illumination interference on sensors. This paper presents a 3D vision measurement method based on digital image processing to improve resistance to noise of measuring systems, which ensuresnormal operation of a structured-light sensor in the wild without changing its components, and the method is applied in 3D reconstruction of snow sculpture. During image preprocessing, an optimal weight function is designed based on noise classification and minimum entropy, and the color images are transformed into monochromatic value images to eliminate most environmental noise. Then a Decision Tree Model (DTM) in a spatial-temporal context of video sequence is used to extract and track stripe. The model is insensitive to stubborn noise and reflection in the images, and the result of the model after coordinate transformation is a 3D point cloud of the corresponding snow sculpture. In experimental results, the root mean square (RMS) error and mean error are less than 0.722 mm and 0.574 mm respectively, showing that the method can realize real-time, robust and accurate measurement under a complex illumination environment, and can therefore provide technical support for snow sculpture 3D measurement.

Funder

National Science Foundation of China with

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Harbin, lanterns of ice, sculptures of snow

2. Analysis of and Research into Foreign Factors That Drive China’s Ice-Snow Tourism;Huang,2011

3. Research on the innovation and development of Harbin ice and snow tourism industry under the background of Beijing winter Olympic Games;Li;China Winter Sports,2018

4. On the digital technology in the protection of ancient buildings;Di;Cult. Relics Apprais. Apprec.,2018

5. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3