Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity

Author:

Górska SandraORCID,Maksymiuk AnnaORCID,Turło JadwigaORCID

Abstract

Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3