Author:
Lee Hyung Ju,Jeong Chan Ho,Kim Dae Yun,Choi Chang Kyoung,Lee Seong Hyuk
Abstract
The present study aims to measure the solid–liquid interface temperature of an evaporating droplet on a heated surface using a thermoresponsive polymer. Poly(N-isopropylacrylamide) (pNIPAM) was used owing to its sensitive optical and mechanical properties to the temperature. We also measured the refractive index variation of the pNIPAM solution by using the surface plasmon resonance imaging (SPRi). In particular, the present study proposed a new method to measure the solid–liquid interface temperature using the correlation among reflectance, refractive index, and temperature. It was found that the reflectance of a pNIPAM solution decreased after the droplet deposition. The solid–liquid interface temperature, estimated from the reflectance, showed a lower value at the center of the droplet, and it gradually increased along the radial direction. The lowest temperature at the contact line region is present because of the maximum evaporative cooling. Moreover, the solid–liquid interface temperature deviation increased with the surface temperature, which means solid–liquid interface temperature should be considered at high temperature to predict the evaporation flux of the droplet accurately.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献