Deep ConvLSTM Network with Dataset Resampling for Upper Body Activity Recognition Using Minimal Number of IMU Sensors

Author:

Lim Xiang Yang,Gan Kok BengORCID,Abd Aziz Noor AzahORCID

Abstract

Human activity recognition (HAR) is the study of the identification of specific human movement and action based on images, accelerometer data and inertia measurement unit (IMU) sensors. In the sensor based HAR application, most of the researchers used many IMU sensors to get an accurate HAR classification. The use of many IMU sensors not only limits the deployment phase but also increase the difficulty and discomfort for users. As reported in the literature, the original model used 19 sensor data consisting of accelerometers and IMU sensors. The imbalanced class distribution is another challenge to the recognition of human activity in real-life. This is a real-life scenario, and the classifier may predict some of the imbalanced classes with very high accuracy. When a model is trained using an imbalanced dataset, it can degrade model’s performance. In this paper, two approaches, namely resampling and multiclass focal loss, were used to address the imbalanced dataset. The resampling method was used to reconstruct the imbalanced class distribution of the IMU sensor dataset prior to model development and learning using the cross-entropy loss function. A deep ConvLSTM network with a minimal number of IMU sensor data was used to develop the upper-body HAR model. On the other hand, the multiclass focal loss function was used in the HAR model and classified minority classes without the need to resample the imbalanced dataset. Based on the experiments results, the developed HAR model using a cross-entropy loss function and reconstructed dataset achieved a good performance of 0.91 in the model accuracy and F1-score. The HAR model with a multiclass focal loss function and imbalanced dataset has a slightly lower model accuracy and F1-score in both 1% difference from the resampling method. In conclusion, the upper body HAR model using a minimal number of IMU sensors and proper handling of imbalanced class distribution by the resampling method is useful for the assessment of home-based rehabilitation involving activities of daily living.

Funder

Universiti Kebangsaan Malaysia

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3